Bassam El Said

Senior Lecturer in Digital Design and Manufacture of Composite, Bristol Composites Institute

NATIONAL COMPOSITES

Artificial Intelligence for a New Generation of Composite Structures

Multi-scale Challenges in Composite Materials

- Composite materials are hierarchal in nature.
- Linking the impact of material architecture and manufacturing processes from the fibre to the structural scale is a multi-scale modelling challenge.
- Material non-linearity (specially damage) and variabilities are the key design driver in most applications.

Laminated Composites

High-Fidelity Model

oading Surfa

3D Woven Composites

Data-driven Multi-scale Models

- Composites strength is dependent on loading conditions.
- Failure manifolds can describe the failure in terms of loading conditions and material layup.

RVE

Pointwise Prediction Network

DNN

 \blacktriangleright Stressesⁿ⁺¹

RVE Image

Strainⁿ⁺¹

Strain

Deep LSTM/ CNN formulation

Deep CNN/LSTM Output

Bristol Composites nstitute

Time Marching Prediction Network

DNN

→ Stressesⁿ⁺¹

RVE Image

Strainⁿ⁺¹

Strain

3D Woven Composites

• During manufacturing, 3D Woven, which are originally periodic, experience localised deformation leading to a non-periodic architecture.

Percentage difference between

Perpetual Learning Artificial Intelligence

- Perpetual Learning enables an Al system to use a physicsbased model to explore the composite response space.
- The system can be used for design, optimisation and quantifying the impact of variabilities

True Function

Perpetual Learning

Bristol Composites Institute

Perpetual Learning Artificial Intelligence

- Perpetual Learning enables an Al system to use a physicsbased model to explore the composite response space.
- The system can be used for design, optimisation and quantifying the impact of variabilities

Design and Optimisation

Impact of Defects

Explainable AI

- Al can be used to extract key information from complex experimental datasets.
- A deep learning model was used to explain the impact of voids on composite strength.

Auto-Encoder Applied to CT-Scan of IM7/8552

GradCAM Analysis

THANK YOU FOR YOUR ATTENTION

Bassam El Said <u>bassam.elsaid@bristol.ac.uk</u>

